Location: Home > AMHD > News and Events > Announcement
Seminar(May 22, 2017)
2017-09-11 | Author: | From:

SpeakerProf. Ming Tan (University of South Alabama)

TitleInterplay between Immune Checkpoint Proteins and Cellular Metabolism

Time: May 22 (Monday) 2017, 9:30am

Venue: Conference room 237, 2nd floor, Main building, KIZ

Everyone is welcome!

Selected Publications:

1. Oncogenic reprograming of cancer cell glucose metabolism: We found that oncogene ErbB2 overexpression leads to dysregulated cell metabolism by upregulate heat shock factor 1/LDHA, and targeting ErbB2 mediated dysregulation of glucose metabolism can overcome therapeutic resistance. 

2. Lim S, Phillips J,  Madeira da Silva L, Zhou M, Fodstad O, Owen LB, and Tan M. Interplay between Immune Checkpoint Proteins and Cellular Metabolism. Cancer Res. 2017 In Press, NIHMS845079. 

3. Zhao YH, Zhou M, Liu H, Khong HT, Yu DH, Fodstad O, and Tan M. Upregulation of LDH-A by ErbB2 through HSF1 promotes breast cancer cell glycolysis and growth. Oncogene, 28(42):3689-701, 2009. PMID:19668225.  

4. Zhao Y, Liu H, Liu Z, Ding Y, LeDoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, Liu B, Fodstad O, Chen J, Wu Y, Price JE, and Tan M. Overcoming Trastuzumab Resistance in ErbB2-Positive Breast Cancer by Targeting Dysregulated Glucose Metabolism. Cancer Res,71(13):4585-97, 2011. PMID: 21498634, PMCID:PMC3129363. 

5. Butler, E.B., Zhao, Y., Muñoz Pinedo, C., Lu, J., and Tan, M. Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance (Invited Review). Cancer Res, 73(9):2709-17, 2013. PMID: 23610447, PMCID: PMC3644012.  

6. HSF1 in cancer cell stress responsive signaling: We investigated the role of stress signals such as ROS, Heat Shock Factor 1 (HSF1) in cancer cell stress response and in drug resistance. We found that ROS plays an important role in cancer cell drug resistance and HSF1 can transcriptionally regulate ATG7 and autophagy and controls cancer cell chemosensitivity. 

7. Zhou M, Zhao YH, Liu H, Ding Y, Fodstad O, Riker AI, Owen LB, LeDoux SP and Tan M. Targeting LDH-A re-sensitizes Taxol-resistant breast cancer cells to Taxol. Mol Cancer, 9(1):33, 2010. PMCID:PMC2829492.  

8. Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, Lu JR. Glucose Oxidation Modulates Anoikis and Tumor Metastasis.(2012)  Mol Cell Biol. 32:1893-907, 2012. PMID:22431524, PMCID:PMC3347404. 

9. Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y, Ahn EE, Fodstad O, Tan M. Heat Shock Factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of Autophagy -related Protein 7 (ATG7). J Biol Chem. 288(13):9165-76, 2013. PMID: 23386620, PMCID: PMC3610989. 

10. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:e532, 2013. PubMed PMID: 23470539; PubMed Central PMCID: PMC3613838. 

11. Non-coding RNA and cancer stem cells in cancer therapeutic resistance: We are one of the first research groups to investigate the role of microRNAs in cancer resistance to chemotherapeutic agents. We find that miR-125b regulate Taxol-induced apoptosis through directly target BAK1 in breast cancer cells. In addition, miR-125b overexpression leads to cancer stem cell enrichment, which also contributes to miR-125b mediated therapeutic resistance.   

12. Zhou M, Zhao YH, Ding Y, Liu H, Liu Z, Xi Y, Xiong W, Li GY, Lu JR, Fodstad O, Riker AI, and Tan M. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of Bak1 expression. J Biol Chem, 285: 28. 21496-507, 2010. PMCID:PMC2898411.  

13. Huang J, Townsend C, Dou D, Liu H, Tan M. OMIT: a domain-specific knowledge base for microRNA target prediction. Pharm Res. 2011 Dec;28(12):3101-4. PubMed PMID: 21879385.  

14. Zixing Liu, Hao Liu, Shruti Desai, David Schmitt, Hung T. Khong, Kristine S. Klos, Steven McClellan, Oystein Fodstad, and Ming Tan.  Upregulation of MicroRNA-125b through Wnt signaling by Snail Enriches Cancer Stem Cells and Increases Chemoresistance. J Biol Chem, 288(6):4334-45, 2013. PMID: 23255607, PMCID: PMC3567684.  

15. Schmitt DC, Madeira da Silva L, Zhang W, Liu Z, Arora R, Lim S, Schuler AM, McClellan S, Andrews JF, Kahn AG, Zhou M, Ahn EY, Tan M. ErbB2-intronic microRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling. Cell Death Dis. 6:e1742, 2015. PubMed PMID: 25950472, PMCID: in process.  

16. ErbB2 and its downstream signaling regulated cancer cell progression and drug resistance: We investigated the role of ErbB2 and its downstream signaling molecules such as Akt, HIF1a, and STAT3 in tumor progression and drug resistance. We also used TAT sequence to target a STAT3 inhibiting peptides to inhibit tumor growth in animal models. 

17. Tan M, Jing T, Lee S, Lan KH, Li P, Nagata Y, Liu J, Arlinghaus R, Hung MC, and Yu D. Direct Phosphorylation on Tyrosine-15 of p34Cdc2 by erbB2 Receptor Tyrosine Kinase Inhibits p34Cdc2 Activation. Mol Cell, 9:993-1004, 2002. PMID:12049736. 

18. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, and Yu D. PTEN Activation Contributes to Tumor Inhibition by Trastuzumab and Loss of PTEN Predicts Trastuzumab Resistance in Patients. Cancer Cell, 6:117-21, 2004 PMID:15324695.  

19. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004 Nov;6(5):459-69. PubMed PMID: 15542430.  

20. Tan M, Lan KH, Yao J, Lu CH, Sun M, et al. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res. 66(7):3764-72, 2006. PubMed PMID: 16585203 

Key laboratory of Animal Models and Human Disease Mechanisms 

Laboratory of Tumor Signal Transduction

Laboratory of Oncobiology


Adress:No.32 Jiaochang Donglu Kunming 650223 Yunnan, China Tel:86-871-65197869